Presenting a New Text-Independent Speaker Verification System Based on Multi Model GMM

نویسندگان

  • Mohammad Mosleh
  • Faraz Forootan
  • Najmeh Hosseinpour
  • M. Mosleh
  • F. Forootan
  • N. Hosseinpour
چکیده

Speaker verification is the process of accepting or rejecting claimed identity in terms of its sound features. A speaker verification system can be used for numerous security systems, including bank account accessing, getting to security points, criminology and etc. When a speaker verification system wants to check the identity of individuals remotely, it confronts problems such as noise effect on speech signal and also identity falsification with speech synthesis. In this system, we have proposed a new speaker verification system based on Multi Model GMM, called SVMMGMM, in which all speakers are divided into seven different age groups, and then an isolated GMM model for each group is created; instead of one model for all speakers. In order to evaluate, the proposed method has been compared with several speaker verification systems based on Naïve, SVM, Random Forest, Ensemble and basic GMM. Experimental results show that the proposed method has so better efficiency than others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Independent Speaker Modeling and Identification Based On MFCC Features

In this gives an overview of automatic speaker recognition technology, with an emphasis on textindependent recognition. Speaker recognition has been studied actively for several decades. We give an overview of both the classical and the state-of-the-art methods. We start with the fundamentals of automatic speaker recognition, concerning feature extraction and speaker modeling. Here, describe a ...

متن کامل

A text-independent speaker verification system using support vector machines classifier

In the recent years the technology for speaker verification or call authentication has received an increasing amount of attention in IVR industry. However due to the complexity of speaker information embedded in the speech signals the current technology still can not produce the verification accuracy to meet the requirement for some applications. In this paper we introduce a new pattern classif...

متن کامل

Linear and non-linear fusion of ALISP-based and GMM systems for text-independent speaker verification

Current state-of-the-art speaker verification algorithms use Gaussian Mixture Models (GMM) to estimate the probability density function of the acoustic feature vectors. They are denoted here as global systems. In order to give better performance, they have to be combined with other classifiers, using different fusion methods. The performance of the final classifier depend on the choice of the s...

متن کامل

Speaker Verification System Using Gaussian Mixture Model & UBM

In This paper presents an overview of a stateof-the-art text-independent speaker verification system. The objective of automatic speaker recognition is to extract, characterize and recognize the information about speaker identity. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization use...

متن کامل

Text-Dependent Speaker Verification System in VHF Communication Channel

Text-independent speaker verification can reach high accuracy provided that there are sufficient amount of training and test speech utterances. Gaussian mixture model universal background model (GMM-UBM), joint factor analysis (JFA) and identity-vector (i-vector) represent the dominant techniques used in this area in view of their superior performance. However, their accuracies drop significant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014